

Automated Feature Segmentation in Digital Cervigrams with a Discriminative Convolutional Neural Network

Isaac G. Freedman BPhil MPH^{1,2}, Thomas JS Durant MD^{1,3}, Harlan M. Krumholz MD SM^{1,4}, Wade L. Schulz MD PhD^{1,3}

¹Yale New Haven Hospital, Center for Outcomes Research and Evaluation, New Haven, CT; ²Yale University School of Medicine, New Haven, CT; ³Yale School of Medicine, Department of Laboratory Medicine, New Haven, CT; ⁴Yale University School of Medicine, Department of Internal Medicine, New Haven, CT

Background

- Cervical cancer is the third leading cause of cancer mortality worldwide and the second most lethal cancer in developing countries; more than half of women who develop cervical cancer have not been screened appropriately.
- Visual inspection with ascetic acid (VIA) along with primary HPV testing is a cost-effective screening method in resource-limited settings.
- The first step to automated cervical cancer screening using computer vision methods is to segment the cervicographic features.

Objectives

- To train a discriminative convolutional neural network (CNN) to generate object masks, which accurately demarcate cervical regions.
- To validate the performance of the trained CNN using the standard performance metric for modern image segmentation technology.

Methods

- Used initial data sample from four datasets in the NIH cervigram database: Costa Rican Natural History Study of HPV and Cervical Neoplasia (NHS), ASCUS LSIL Triage Study (ALTS), Biopsy Study, and Costa Rica Vaccine Trial (CVT).
- Manually labeled cervical regions of interest (ROIs) from 411 cervigram images selected randomly from the four datasets.
- Trained the DeepMask/SharpMask CNN architecture to segment image priors and generate object masks.

Methods

- down structure.

- ✤ N = 300 (72.9%) manually labeled cervigrams trained the CNN and the model was validated on N = 111 (27.1%) of the images.
- Validate the performance of the trained CNN by calculating the Jaccard Index, or Intersection over Union (IoU), for a set of labeled validation images. ✤ An IoU value of 1 indicates a model that
- completely predicts the ROI.

Validate the performance of the trained CNN by calculating the Jaccard Index, or Intersection over Union (IoU), for a set of labeled validation images. The SharpMask CNN architecture consists of the DeepMask feedforward CNN (left) with a bottomup structure for image segmentation followed by refinement modules (middle and right) in a top-

Results

Loss function and IoU of DeepMask model during training.

60

40

Intersection over Union (IoU) for 300 training cervigrams and 111 validation cervigrams.

Results Representative cervigram (a) with segmentation mask (b). ✤ Red line indicates manual label. Image is automated segmentation with IoU = 92%. 200 400 600 800 Conclusions Discriminative CNN architecture yields state of the art image segmentation of cervigrams. Model trained on a small fraction of the pilot dataset (14%). Training the model on a larger number of images will likely yield higher segmentation accuracy (IoU).

Automatically segmented cervigrams from our model trained on the complete dataset will next be used to train a classification CNN to predict malignancy.

References

- Ponka D, et al. CMAJ 2014; 186(18):1394
- Gordi SJ, et al. NEJM 2004; 353(20):2158-68
- Pinheiro PO, et al. CVPR 2016; ArXiv:1603.08695

Acknowledgements

We would like to acknowledge the NCI CISP User Committee for consultation and access to the cervigram dataset.