

Machine Learning Based Prediction of In-Hospital Mortality with Acute Myocardial Infarction

Julian S. Haimovich BS^{1,2,3}, Chenxi Huang, MS PhD^{2,3}, Shu-Xia Li PhD², Bobak J. Mortazavi PhD^{2,3,4}, and Harlan M. Krumholz MD SM^{2,3}

¹Albert Einstein College of Medicine, Bronx, NY; ²Yale-New Haven Hospital Center for Outcomes Research and Evaluation, New Haven, CT; ³Yale University School of Medicine, Department of Internal Medicine, New Haven, CT; ⁴Department of Computer Science & Engineering, Texas A&M University, College Station, TX

Background

- Nearly 1 million patients in the United States are hospitalized with an acute myocardial infarction (AMI) each year, and between 3 and 8% of these patients do not survive to discharge
- Accurately predicting in-hospital outcomes for patients with AMI has the potential to:
- Aid in risk-stratification and management of patients presenting with AMI
- 2. Improve retrospective analysis of hospital performance in the care of AMI patients
- Past modeling efforts (McNamara et al.) employed logistic regression with backward selection to produce a parsimonious variable set for predictions (C-stat = 0.87), but this study was limited by the inclusion of only a partial sample of the available cohort (22%) and patient variables (28%)

Objectives

- To determine if the application of machine learning techniques can improve prediction of in-hospital mortality in patients with AMI compared with previous models
- To compare the performance of different machine learning approaches

Data

- Patient data is taken from ACTION-GWTG registry, a national quality improvement registry for AMI collected from 655 participating hospitals over 10 years, and encompassing over 1 million patients
- Models are built on 96 patient variables available at time of presentation including history, risk factors, demographics, and initial laboratory values (except where otherwise noted for LR model)

Methods

- McNamara et al. study
- predictive capabilities

Level 1

Risk prediction

from level 1

classifiers

XGBoost

(C)

(D)

Figure 1. Computational approach. Level 1 classifiers consist of four independent models each trained on the same initial 40% training sample (A). The next 40% training sample (B) is then input into the Level 1 classifiers, resulting in one risk estimate from each Level 1 model. These four risk estimates are then used to train the Level 2 XGBoost classifier (C). A final sample (D) is used to test the performance of the Level 1 and Level 2 classifiers.

Results						Results					
Figure 2: Receiver-Operator Characteristic Curves for LR. Lasso. XGBoost. and Meta models						Table 2: Shift table comparison of individual risk estimates from Lasso and XGBoost/Meta models					
						Lasso risk					
Receiver Operator Characteristic Curves								Low (< 1%)	Moderate (1-5%)	High (> 5%)	
						XGBoost	Low (< 1%)	0.2% (88,777)	0.5% (43 <i>,</i> 080)	0.4% (677)	
					risk Meta risk	Moderate (1-5%)	1.8% (3,233)	2.2% (41,069)	3.4% (13,301)		
							High (> 5%)	9.5% (258)	11.8% (6,473)	26.1% (30,630)	
						Low (< 1%)	0.2% (89,567)	0.5% (47,061)	0.4% (565)		
						Moderate (1-5%)	2.0% (2,418)	2.2% (36,636)	2.9% (11,263)		
							High (> 5%)	9.7% (310)	11.8% (6,925)	24.8% (32,780)	
✤ <u>Table 1: Suble 1: Suble</u>	ummary of Boost, and I	<u>model per</u> Meta mod	<u>formance f</u> els	for LR,		cohort, and the sample size is shown in parentheses.					
	LR I	Lasso X	GBoost N	/leta							
ROC AUC	0.872	0.900	0.929	0.930		💠 Mach	ine learni	ng based app	proaches outp	perform	
(C-statistic)						conventional logistic regression in predicting in-					
PR AUC	0.36	0.42	0.55	0.55		 hospital mortality with AMI, and therefore have the potential to both enhance hospital-specific risk adjustment for retrospective profiling, and improve risk-stratification of AMI patients Amongst the machine learning methods, non-linear 					
F-score	0.41	0.45	0.53	0.53							
Sensitivity	0.41	0.48	0.54	0.54							
Specificity	0.97	0.97	0.98	0.98							
PPV	0.41	0.42	0.51	0.52							
NPV	0.97	0.97	0.98	0.98		models such as XGBoost and the meta-classifier					
Brier Score Decomposition						outperform the linear Lasso model in predicting in-					
Reliability	15.9	43.0	7.1	1.3		hospital mortality with AMI					
(x10 ⁻⁶)	+/- 4.5	+/- 9.9	+/- 2.8	+/- 1.8							
Resolution	7.4	7.4	9.6	9.8		Refe	rence	S			
(x10 ⁻³)	+/- 0.2	+/- 0.1	+/- 0.2	+/- 0.2							
Uncertainty Overall	0.044 0.38	0.044 0.037	0.044 0.035	0.044 0.034		From the American Heart Association." <i>Circulation</i> , vol. 135, no. 10, 2017, doi:10.1161/cir.00000000000485.					

Myocardial Infarction." Journal of the American College of Cardiology, vol. 68, no. 6, 2016, pp. 626-635., doi:10.1016/j.jacc.2016.05.049.