Prevalence, awareness, treatment, and control of
hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project)
Japeng Lu*, Yuan Lu*, Xiaochen Wang, Xinyve Li, George C Linderman, Chaoqun Wu, Xivyuan Cheng, Lin Mu, Haibo Zhang, Jiamin Liu, Meng Su, Hongyu Zhoo, Erica S Spatz, John A Spertus, Fredericik A Masoudi, Hartan M Kumholzt, Lixin Jiangt
Summary
ackground Hypertension is common in China and its prevalence is rising, yet it remains inadequately controlled. Few studies have the capacity to characterise the epidemiology and management of hypertension across many heterogeneous
subgroups. We did a study of the prevalence, awareness, treatment, and control of hypertension in China and assessed heir variations across many subpopulations.
Methods We made use of data generated in the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE) Million Persons Project from Sept 15 , 2014, to June 20, 2017, a population-based screening project that enrolled around 1.7 million community-dwelling adults aped $35-75$ years from all 31 provinces in mainland China. In this population, we defined hypertension as systolic blood pressure of at least 140 mm Hg , or diastolic blood pressure of at least 90 mm Hg ,
or selfreported antihypertensive medication use in the previous 2 weeks. Hypertension awareness, treatment, and control were defined, respectively, among hypertensive adults as a self-reported diagnosis of hypertension, current use of antihypertensive medication, and blood pressure of less than $140 / 90 \mathrm{~mm} \mathbf{H g}$. We assessed awareness, treatment, and ontrol in 264475 population subgroups-defined a priori by all possible combinations of 11 demographic and dinical actors (age [35-44, 45-54, 55-64, and 65-75 years], sex [men and women], geographical region [western, central, and astern China], urbanity [urban vs rural], ethnic origig [Han and non-Han], occupation [farmer and non-farmer), annual household income $\leqslant ~ \$ 10000$, $¥ 10000-50000$, and $\geq ¥ 50000$], education [primary school and below, middle school, high
school, and college and abovel, previous cardiovascular events syes or nol, current smoker [yes or nol, and diabetes [yes or nol), and their associations with individual and primary health-care site characteristics, using mixed models.
Findings The sample contained 1738886 participants with a mean age of 55.6 years (SD 9.7), 59.5% of whom were women. $44 \cdot 7 \%(95 \%$ CI $44 \cdot 6-44.8$) of the sample had hypertension, of whom 44.7% (44.6-44.8) were aware of their vomen. $44 \cdot 7 \%(95 \% \mathrm{Cl}$ 44.6-44.8) of the sample had hypertension, of whom $44 \cdot 7 \%(44 \cdot 6-44 \cdot 8)$ were aware of their
liagnosis, $30 \cdot 1 \%(30 \cdot 0-30 \cdot 2)$ were taking prescribed antihypertensive medications, and $7 \cdot 2 \%(7 \cdot 1-7 \cdot 2)$ had achieved control. The age-standardised and sex-standardised rates of hypertension prevalence, awareness, treatment, and control vere $37 \cdot 2 \%(37 \cdot 1-37 \cdot 3), 36 \cdot 0 \%(35 \cdot 8-36 \cdot 2), 22 \cdot 9 \%(22 \cdot 7-23 \cdot 0)$, and $5 \cdot 7 \%(5 \cdot 6-5 \cdot 7)$, respectively. The most ommonly used medication class was calcium-channel blockers $(55 \cdot 2 \%, 55 \cdot 0-55 \cdot 4)$. Among individuals whose
hypertension was treated but not controlled, $81.5 \%(81 \cdot 3-81 \cdot 6$ were using only one medication. The proportion of participants who were aware of their hypertension and were receiving treatment varied significantly across subpopulations; ower likelihoods of awareness and treatment were associated with male sex, younger age, lower income, and an absence of previous cardiovascular events, diabetes, obesity, or alcohol use (all $\mathrm{p}<0.01)$. By contrast, control rate was universally
ow across all subgroups ($<30.0 \%$).

Intepretation Among Chinese adults aged $35-75$ years, nearly half have hypertension, fewer than a third are being rreated, and fewer than one in twelve are in control of their blood pressure. The low number of people in control is biquitous in all subgroups of the Chinese population and warrants broad-based, global strategy, such as greater effor

Funding Ministry of Finance and National Health and Family Planning Commission, China
introduction
ood pressure control is a national public health priority China. 'Surveys in China show that high blood pressure
common, but hypertension treatment and control rates udies than 50% and 20%, respectively, across different China's average burden of hypertension ${ }^{2 \rightarrow}$ but nutional
data on hypertension treatment are scarce, and how hypertension awareness, treatment, and control rates vary geographically and across population subgroups is
uncertain. Because of their small sample sizes, previou studies examined hypertension measures in only a few subgroups, and to our knowledge none had the capacity create a wide variety of discrete subgroups to investigate

Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project)

Jiapeng Lu*, Yuan Lu*, Xiaochen Wang, Xinyue Li, George C Linderman, Chaoqun Wu, Xiuyuan Cheng, Lin Mu, Haibo Zhang, Jiamin Liu, Meng Su, Hongyu Zhao, Erica S Spatz, John A Spertus, Frederick A Masoudi, Harlan M Krumholz†, Lixin Jiang†

Abstract

Background- Hypertension is common in China and its prevalence is rising, yet it remains inadequately controlled. Few studies have the capacity to characterise the epidemiology and management of hypertension across many heterogeneous subgroups. We did a study of the prevalence, awareness, treatment, and control of hypertension in China and assessed their variations across many subpopulations.

Methods- We made use of data generated in the China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE) Million Persons Project from Sept 15, 2014, to June 20, 2017, a population-based screening project that enrolled around 1.7 million community-dwelling adults aged $35-75$ years from all 31 provinces in mainland China. In this population, we defined hypertension as systolic blood pressure of at least 140 mm Hg , or diastolic blood pressure of at least 90 mm Hg , or self-reported antihypertensive medication use in the previous 2 weeks. Hypertension awareness, treatment, and control were defined, respectively, among hypertensive adults as a self-reported diagnosis of hypertension, current use of antihypertensive medication, and blood pressure of less than $140 / 90 \mathrm{~mm} \mathrm{Hg}$. We assessed awareness, treatment, and control in 264475 population subgroups—defined a priori by all possible combinations of 11 demographic and clinical factors (age [35-44, 45-54, 55-64, and 65-75 years], sex [men and women], geographical region [western, central, and eastern China], urbanity [urban vs rural], ethnic origin [Han and non-Han], occupation [farmer and non-farmer], annual household income $[<¥ 10000, ¥ 10000-50000$, and $\geq ¥ 50000$], education [primary school and below, middle school, high school, and college and above], previous cardiovascular events [yes or no], current smoker [yes or no], and diabetes [yes or no]), and their associations with individual and primary health-care site characteristics, using mixed models.

Findings- The sample contained 1738886 participants with a mean age of $55 \cdot 6$ years (SD 9.7), 59.5% of whom were women. 44.7% ($95 \% \mathrm{Cl} 44 \cdot 6-44 \cdot 8$) of the sample had hypertension, of whom 44.7% ($44 \cdot 6-44 \cdot 8$) were aware of their diagnosis, $30 \cdot 1 \%(30 \cdot 0-30 \cdot 2)$ were taking prescribed antihypertensive medications, and $7 \cdot 2 \%(7 \cdot 1-7 \cdot 2)$ had achieved control. The age-standardised and sex-standardised rates of hypertension prevalence, awareness, treatment, and control were $37 \cdot 2 \%(37 \cdot 1-37 \cdot 3), 36 \cdot 0 \%(35 \cdot 8-36 \cdot 2), 22 \cdot 9 \%(22 \cdot 7-23 \cdot 0)$, and $5 \cdot 7 \%(5 \cdot 6-5 \cdot 7)$, respectively. The most commonly used medication class was calcium-channel blockers ($55 \cdot 2 \%, 55 \cdot 0-55 \cdot 4$). Among individuals whose hypertension was treated but not controlled, 81.5% ($81 \cdot 3-81 \cdot 6$) were using only one medication. The proportion of participants who were aware of their hypertension and were receiving treatment varied significantly across subpopulations; lower likelihoods of awareness and treatment were associated with male sex, younger age, lower income, and an absence of previous cardiovascular events, diabetes, obesity, or alcohol use (all p<0.01). By contrast, control rate was universally low across all subgroups (<30•0\%). Interpretation- Among Chinese adults aged 35-75 years, nearly half have hypertension, fewer than a third are being treated, and fewer than one in twelve are in control of their blood pressure. The low number of people in control is ubiquitous in all subgroups of the Chinese population and warrants broad-based, global strategy, such as greater efforts in prevention, as well as better screening and more effective and affordable treatment.

Table 1. Characteristics of the study population by blood pressure levels

	Overall ($\mathrm{n}=1738$ 886)	No hypertension ($\mathrm{n}=961249$)	All hypertension ($\mathrm{n}=777637$)	Stage 2 and above hypertension ($\mathrm{n}=264822$)
Prevalence	100.0\% (100.0-100.0)	$55 \cdot 3 \%(55 \cdot 2-55 \cdot 4)$	44.7\% (44.6-44.8)	15.2\% (15.2-15.3)
Age (years)				
35-39	77668 (4.5\%)	64096 (6.7\%)	13572 (1.7\%)	4391 (1.7\%)
40-44	184594 (10.6\%)	140398 (14.6\%)	44196 (5.7\%)	13625 (5.1\%)
45-49	256922 (14.8\%)	174123 (18.1\%)	82799 (10.6\%)	26397 (10.0\%)
50-54	304060 (17.5\%)	177001 (18.4\%)	127059 (16.3\%)	41005 (15.5\%)
55-59	248157 (14.3\%)	127944 (13.3\%)	120213 (15.5\%)	39336 (14.9\%)
60-64	299540 (17.2\%)	136111 (14.2\%)	163429 (21.0\%)	56108 (21-2\%)
65-69	224432 (12.9\%)	89541 (9.3\%)	134891 (17.3\%)	48699 (18.4\%)
70-75	143513 (8.3\%)	52035 (5.4\%)	91478 (11.8\%)	35261 (13.3\%)
Sex				
Men	703860 (40.5\%)	373961 (38.9\%)	329899 (42.4\%)	111004 (41.9\%)
Women	1035026 (59.5\%)	587288 (61.1\%)	447738 (57.6\%)	153818 (58.1\%)
Urbanity				
Urban	675339 (38.8\%)	388598 (40.4\%)	286741 (36.9\%)	92866 (35.1\%)
Rural	1063547 (61.2\%)	572651 (59.6\%)	490896 (63-1\%)	171956 (64.9\%)
Geographical region of China				
Eastern	576110 (33.1\%)	293056 (30.5\%)	283054 (36.4\%)	93725 (35.4\%)
Western	675880 (38.9\%)	401480 (41.8\%)	274400 (35.3\%)	98380 (37.1\%)
Central	486896 (28.0\%)	266713 (27.7\%)	220183 (28.3\%)	72717 (27.5\%)
Ethnic group				
Han	1529611 (88.0\%)	833104 (86.7\%)	696507 (89.6\%)	233173 (88.0\%)
Non-Han	207376 (11.9\%)	127268 (13.2\%)	80108 (10.3\%)	31255 (11.8\%)
Unknown*	1899 (0.1\%)	877 (0.1\%)	1022 (0-1\%)	394 (0.1\%)
Education				
Primary school or lower	769511 (44.3\%)	387976 (40.4\%)	381535 (49-1\%)	135535 (51.2\%)
Middle school	558880 (32.1\%)	322264 (33.5\%)	236616 (30.4\%)	77708 (29.3\%)
High school	258905 (14.9\%)	154575 (16.1\%)	104330 (13.4\%)	33203 (12.5\%)
College or above	125113 (7.2\%)	81215 (8.4\%)	43898 (5.6\%)	14430 (5.4\%)
Unknown*	26477 (1.5\%)	15219 (1.6\%)	11258 (1.4\%)	3946 (1.5\%)

Table 1. Continued

	Overall ($\mathrm{n}=1738$ 886)	No hypertension $(n=961249)$	All hypertension $(n=777637)$	Stage 2 and above hypertension ($\mathrm{n}=264822$)
Prevalence	100.0\% (100.0-100.0)	55.3\% (55-2-55.4)	44.7\% (44.6-44.8)	15.2\% (15.2-15.3)
Household income ($¥$ /year)				
<10000	390948 (22.5\%)	208204 (21.7\%)	182744 (23.5\%)	67295 (25.4\%)
10000-50000	958190 (55.1\%)	530784 (55.2\%)	427406 (55.0\%)	143234 (54.1\%)
>50000	229483 (13.2\%)	131188 (13.6\%)	98295 (12.6\%)	30146 (11.4\%)
Unknown*	160265 (9.2\%)	91073 (9.5\%)	69192 (8.9\%)	24147 (9.1\%)
Marital status				
Married	1615561 (92.9\%)	902844 (93.9\%)	712717 (91.7\%)	241472 (91.2\%)
Widowed, separated, divorced, or single	100412 (5.8\%)	45531 (4.7\%)	54881 (7.1\%)	19595 (7.4\%)
Unknown*	22913 (1.3\%)	12874 (1.3\%)	10039 (1.3\%)	3755 (1.4\%)
Health insurance status				
Insured	1701087 (97.8\%)	939638 (97.8\%)	761449 (97.9\%)	259234 (97.9\%)
Uninsured	10083 (0.6\%)	6099 (0.6\%)	3984 (0.5\%)	1306 (0.5\%)
Unknown*	27716 (1.6\%)	15512 (1.6\%)	12204 (1.6\%)	4282 (1.6\%)
Medical history				
Myocardial infarction	12649 (0.7\%)	4560 (0.5\%)	8089 (1.0\%)	2611 (1.0\%)
Stroke	40555 (2.3\%)	10879 (1.1\%)	29676 (3.8\%)	11568 (4.4\%)
Cardiovascular disease risk factors				
Diabetes mellitus	105379 (6-1\%)	35377 (3.7\%)	70002 (9.0\%)	24989 (9.4\%)
Current smoker	340219 (19.6\%)	185504 (19.3\%)	154715 (19.9\%)	52340 (19.8\%)
Current drinker	418818 (24.1\%)	217158 (22.6\%)	201660 (25.9\%)	69463 (26.2\%)
Obesity (body-mass index $\geq 28 \mathrm{~kg} / \mathrm{m}^{2}$)	272796 (15.7\%)	98203 (10.2\%)	174593 (22.5\%)	66675 (25.2\%)

Data are $\%(95 \% \mathrm{Cl})$ or $\mathrm{n}(\%)$. No hypertension: systolic blood pressure $<140 \mathrm{~mm} \mathrm{Hg}$, diastolic blood pressure $<90 \mathrm{~mm} \mathrm{Hg}$, and not taking antihypertensive medication. All hypertension: systolic blood pressure $\geq 140 \mathrm{~mm} \mathrm{Hg}$ or diastolic blood pressure $\geq 90 \mathrm{~mm} \mathrm{Hg}$, or taking antihypertensive medication. Stage 2 and above hypertension: systolic blood pressure $\geq 160 \mathrm{~mm} \mathrm{Hg}$ or diastolic blood pressure $\geq 100 \mathrm{~mm} \mathrm{Hg}$. *Participants either refused to answer the question or did not know the answer.

Figure 1: Prevalence, awareness, treatment, and control of hypertension among study participants

Data are shown stratified by age and sex.

Figure 2: Density plots of awareness, treatment, and control of hypertension in 264475 subgroups

Table 2: The most commonly used medications among treated adults with hypertension

	Overall	35-44 years	45-54 years	55-64 years	65-75 years
Among adults using one medication					
Nifedipine	49034 (26.2\%)	1398 (22.1\%)	9926 (24.2\%)	19516 (26.5\%)	18194 (27.5\%)
Amlodipine	14390 (7.7\%)	476 (7.5\%)	3240 (7.9\%)	5594 (7.6\%)	5080 (7.7\%)
Indapamide	11598 (6.2\%)	349 (5.5\%)	2712 (6.6\%)	4664 (6.3\%)	3873 (5.9\%)
Compound reserpine*	9944 (5•3\%)	227 (3.6\%)	2036 (5.0\%)	3922 (5.3\%)	3759 (5.7\%)
Nitrendipine	9107 (4.9\%)	193 (3.0\%)	1565 (3.8\%)	3490 (4.7\%)	3859 (5.8\%)
Total	187320 (100\%)	6335 (100\%)	40995 (100\%)	73749 (100\%)	66241 (100\%)
Among adults using two medications					
Nifedipine and metoprolol	1684 (5•7\%)	48 (4.2\%)	369 (5.3\%)	621 (5.5\%)	646 (6.2\%)
Captopril and nifedipine	1441 (4.8\%)	52 (4.5\%)	279 (4.0\%)	582 (5.2\%)	528 (5.0\%)
Nifedipine and irbesartan	911 (3.1\%)	42 (3.7\%)	217 (3.1\%)	342 (3.0\%)	310 (3.0\%)
Amlodipine besylate and irbesartan	893 (3.0\%)	32 (2.8\%)	235 (3.4\%)	330 (2.9\%)	296 (2.8\%)
Nifedipine and telmisartan	711 (2.4\%)	38 (3.3\%)	183 (2.6\%)	265 (2.4\%)	225 (2.1\%)
Total	29792 (100\%)	1143 (100\%)	6913 (100\%)	11263 (100\%)	10473 (100\%)
Among adults using three medications					
Nifedipine, metoprolol, and irbesartan	61 (2.5\%)	3 (3.0\%)	6 (1.1\%)	23 (2.6\%)	29 (3.1\%)
Amlodipine, metoprolol, and irbesartan	54 (2.2\%)	4 (4.0\%)	9 (1.6\%)	18 (2.1\%)	23 (2.5\%)
Nifedipine, telmisartan, and metoprolol	41 (1.7\%)	0	13 (2.4\%)	12 (1-4\%)	16 (1.7\%)
Total	2453 (100\%)	99 (100\%)	549 (100\%)	876 (100\%)	929 (100\%)

Data are $\mathrm{n}(\%)$ stratified by age and number of medications. *A fixed-dose combination drug consisting of reserpine (0.032 mg), hydrochlorothiazide (3.1 mg), potassium chloride (30 mg), dihydralazine sulfate $(2 \cdot 1 \mathrm{mg})$, and promethazine $(2 \cdot 1 \mathrm{mg})$.

Table 3. Individual characteristics associated with prevalence, awareness, treatment, and control of hypertension

	Prevalence	Awareness	Treatment	Control
Age (per 5 years)	1.35 (1.35-1.35)	$1 \cdot 20$ (1.20-1.20)	$1 \cdot 19$ (1-19-1.20)	1.07 (1.07-1.08)
Sex				
Men	1 (ref)	1 (ref)	1 (ref)	1 (ref)
Women	0.97 (0.96-0.98)	$1 \cdot 18$ (1.16-1.19)	$1 \cdot 16$ (1-14-1.18)	1.11 (1.09-1.14)
Ethnic origin				
Non-Han	1 (ref)	1 (ref)	1 (ref)	1 (ref)
Han	1.00 (0.98-1.01)	1.00 (0.97-1.02)	1.03 (1.01-1.06)	1.06 (1.01-1.12)
Marital status				
Not married	1 (ref)	1 (ref)	1 (ref)	1 (ref)
Married	0.93 (0.92-0.94)	0.97 (0.95-0.99)	1.01 (0.99-1.03)	1.08 (1.05-1.12)
Annual household income ($¥$)				
<10000	1 (ref)	1 (ref)	1 (ref)	1 (ref)
10000-50 000	1.00 (0.98-1.01)	1.02 (1.01-1.04)	1.04 (1.02-1.06)	1.09 (1.06-1.12)
>50000	1.00 (0.99-1.02)	1.09 (1.07-1.12)	$1 \cdot 10$ (1.08-1.13)	$1 \cdot 22$ (1.18-1.27)
Education level				
Lower than college	1 (ref)	1 (ref)	1 (ref)	1 (ref)
College or above	0.93 (0.91-0.96)	$1 \cdot 16$ (1.12-1.21)	$1 \cdot 14$ (1-10-1.19)	$1 \cdot 22$ (1.15-1.30)
Occupation				
Not a farmer	1 (ref)	1 (ref)	1 (ref)	1 (ref)
Farmer	0.96 (0.95-0.97)	0.90 (0.89-0.92)	0.83 (0.82-0.85)	0.80 (0.77-0.82)

Table 3. Continued

	Prevalence	Awareness	Treatment	Control
Health insurance status				
Insured	1 (ref)	1 (ref)	1 (ref)	1 (ref)
Uninsured	0.99 (0.93-1.05)	0.78 (0.70-0.85)	0.76 (0.69-0.85)	0.75 (0.62-0.91)
Cardiovascular disease risk factors				
Current smoker	1.03 (1.02-1.04)	1.03 (1.02-1.05)	0.99 (0.98-1.01)	$1 \cdot 13$ (1-10-1.16)
Current drinker	1.50 (1.48-1.52)	0.94 (0.93-0.96)	0.87 (0.85-0.88)	0.74 (0.72-0.77)
Diabetes mellitus	2.59 (2.57-2.62)	2.25 (2.21-2.29)	1.79 (1.76-1.83)	1.37 (1.34-1.41)
Obesity (body-mass index $\geq 28 \mathrm{~kg} / \mathrm{m}^{2}$)	1.80 (1.77-1.82)	1.66 (1.64-1.68)	1.55 (1.53-1.57)	1.02 (0.99-1.04)
Previous cardiovascular diseases	$2 \cdot 20$ (2.15-2.24)	$3 \cdot 20$ (3.12-3.29)	2.60 (2.54-2.67)	2.07 (2.00-2.13)
Geographical region of China				
Western	1 (ref)	1 (ref)	1 (ref)	1 (ref)
Central	1.52 (1.44-1.60)	1.02 (0.93-1.11)	0.87 (0.77-0.98)	0.93 (0.80-1.08)
Eastern	1.34 (1.26-1.42)	$1 \cdot 10$ (0.91-1.19)	1.08 (0.94-1.23)	1.06 (0.90-1.25)
Data are odds ratios (95\% CI).				

Conclusion

- We conclude that hypertension is a major public health challenge in China. Despite its high prevalence, hypertension control in community-dwelling residents is poor, both overall and in diverse population subgroups.
- Our findings support broad-based opportunities to mitigate the burden of hypertension and suggest the need for a national strategy on hypertension prevention and control.

